Noi

Noi

luni, 6 martie 2017

O bibliografie cu privire la chestiunea accelerării succesiunii ecologice în proiecte de restaurare ecologică

Lucrând la un articol de sinteză a trebuit să ne facem o imagine asupra situaţie la zi (primăvara lui 2017) în chestiunea înţelegerii şi modelării proceselor de succesiune ecologică şi a potenţialului de utilizare a acestei cunoaşteri în proiectarea restaurării sistemelor ecologice.

Lista bibliografică poate fi consultată direct la finalul postării, iar în format Word poate fi descărcată de aici : References Sucession . Lista include lucrări relevante direct și indirect pentru implicarea fungilor micorizanți în procesele de succesiune ecologică. Include și informații despre procese de la nivelul consumatorilor.

Pachetul de articole, capitole din cărți, cărți și prezentări poate fi descărcat dând click pe imaginea de mai jos (arhivă rar de 150 Mb):







De interes didactic pe scurt se pot spune următoarele :
  1.  Ideea de a identifica tipare general de succesiune la scara întregii comunităţi din toate speciile dintr-o zonă ţine de istorie. Modelele generale nu se mai lucrează. Modele generale vechi au căpătat caracterul explicit al unor ipoteze care alături de alte modele mai noi se află în competiţie şi sunt testate empiric. Sunt trei categorii de modele: deterministe, stochastice şi de tranziţie de stare (cu prag, nelimiare), iar fiecare are în spate ipoteze despre procese empirice care se potrivesc cu un model sau altul. Altfel spus avem de a face cu o abordare analitică a succesiunii ecologice, nu holistă. Tiparele abstracte caracteristice unor teorii din anii 90 şi 2000 nu mai sunt considerate relevante pentru rezolvarea unor probleme practice şi în general pentru înţelegerea datelor din teren. 
  2. Chestiunea succesiunii ecologice e strâns legată de cea a heterogenității spațiale în sisteme ecologice, a scării la care organismele din diferite specii percep resursele și a discontinuităților de scară în organizare proceselor ecologice.
  3. Se lucrează pe fiecare tip de comunitate de organisme în parte la scările caracteristice organismelor respective. La unele nu se ştiu exact scările la care trebuie lucrat (de exemplu organismele subterane din sol). Procesele care susţin succesiunea pentru fiecare tip de comunitate din aceeaşi zonă sunt diverse şi variază de la o comunitate de organisme la alta.
  4. Cuplajele între procesele de succesiune dintr-o comunitate şi din alta sunt în faza preliminară de investigare, scările de timp sunt diferite şi datele empirice în aceeaşi zonă adesea lipsesc. Există o literatură emergentă cu privire la acest cuplaje, atât prin cercetări empirice, cât și teoretice. Direcția este convergentă cu preocupările generale ale ecologiei sistemice, dar nu este explicit subsumată acestora.
  5. Ideea de a accelera succesiunea prin manipularea organismelor, în particular a fungilor, şi a condiţiilor abiotice are sens doar în modelul determinist al succesiunii, sau în etape separate ale unui model de tranziţii de stare. Această manipulare trebuie să fie mai puternică decât influenţa procesele stochastice care intervin şi ele în zonă ca urmare a heterogenităţii interne şi a factorilor externi aleatori. Accelerarea succesiunii ecologice nu este nici pe departe o soluţie generală, ci doar una posibilă alături de soluţii mai dure, cu intervenţii intensive care să poată schimba starea sistemului când el poate fi modelat prin tranziţii de fază.
  6. Scara de timp a evaluării prin monitorizare a efectelor manipulării trebuie să fie compatibilă cu cea a proceselor de succesiune, ceea ce leagă direct problema cu cea a monitoringului pe termen lung al sistemelor ecologice.



Bibliografie

1.      A’Bear AD, Jones TH, Boddy L (2014) Size matters: what have we learnt from microcosm studies of decomposer fungus-invertebrate interactions? Soil Biology & Biochemistry, 78: 274-283
2.      Alday JG, Marrs RH, Martinez-Ruiz C (2011) Vegetation succession on reclaimed coald wastes in Spain: the influence of soil and environmental factors, Applied Vegetation Science, 14: 84-94
3.      Andres P, Mateos E (2006) Soil mesofaunal responses to post-mining restoration treatments, Applied Soil Ecology, 33: 67-78
4.      Andrew C, Heegaard E, Halvorsen R, Martinez-Pena F, Egli S, Kirk PM, Bassler C, Buntgen U, Aldea J, Hoiland K, Boddy L, Kauserud H (2016) Climate impacts on fungal community and trait dynamics. Fungal Ecology, 22: 17-25
5.      Angeler DG, Allen CR, Barichievy C, Eason T, Garmestani AS, Graham NAJ, Granholm D, Gunderson LH, Knutson M, Nash KL, Nelson J, Nystrom M, Spanbauer TL, Stow CA, Sundstrom SM (2016) Management applications of discontinuity theory, Journal of Applied Ecology, 53: 688-698
6.      Antunes PM, Koyama A (2017) Mycorrhizas as nutrient and energy pumps of soil food webs: multitrophic interactions and feedbacks, In Johnson CN, Gehring C, Jansa J (Editors) “Mycorrhizal mediation of soil: fertility, structure and carbon storage”, Elsevier, 149-173
7.      Armesto JJ, Picklet STA, McDonnell MJ (1991) Spatial heterogeneity during succession: a cyclic model of invasion and exclusion, In Kolosa J, Picklett STA (Editors) “Ecological Heterogeneity” Springer, New York, 256-269
8.      Asmelash F, Bekele T, Birhane E (2016) The potential role of arbuscular mycorrhizal fungi in the restoration of degraded lands, Frontiers in Microbiology, doi: 10.3389/fmicb.2016.01095
9.      Baasch A, Tischew S, Bruelheide H (2009) Insights into succession processes using temporally repeated habitat models: results from a long-term study in a post-mining landscape, Journal of Vegetation Science, 20: 629-638
10.  Bahram M, Kohout P, Anslan S, Harend H, Abarenkov K, Tedersoo (2015) Stochastic distribution of small eukaryotes resulting from high dispersal and drift in a local environment, The ISME Journal, 1-12
11.  Bahram M, Peay KG, Tedersoo L (2015) Local-scale biogeography and spatiotemporal variability in communities of mycorrhizal fungi, New Phytologist, 205, 1454-1463
12.  Baldrian P (2017) Forest microbiome: diversity, complexity and dynamics, FEMS Microbiology Reviews, 41: 109-130
13.  Bartomeus I, Gravel D, Tyliaanakis JM, Aizen MA, Dickie IA, Bernard-Verdier M (2016) A common framework for identiying linkage rules across different types of interactions, Functional Ecology, 30: 1894-1903
14.  Bartuska M, Pawlet M, FrouzJ (2015) Particulate organic carbon at reclaimed and unreclaimed post-mining soils and its microbial community composition, Catena, 131: 92-98
15.  Bascompte J, Jordano P, Olsen JM (2006) Asymmetric coevolutionary networks facilitate biodiversity maintenance, Science, 312, 431-433
16.  Bastow J (2012) Succession, resource processing, and diversity in detrital food webs, In Wall D. H. et al. (Editors) “Soil ecology and ecosystem services”, Oxford University Press, Oxford, 117-135
17.  Berg MP (2012) Patterns of biodiversity at fine and small spatial scales, In Wall D. H. et al. (Editors) “Soil ecology and ecosystem services”, Oxford University Press, Oxford, 136-152
18.  Bernhardt ES, Blaszczack JR, Ficken CD, Fork ML, Kaiser KE, Seybold EC (2017) Control points in ecosystems: moving beyond the hot spot hot moment concept, Ecosystems, DOI: 10.1007/s10021-016-0103-y, on-line first
19.  Bestelmeyer BT, Brown JR, Havstad KM, Alexander R, Chavez G, Herrick JE (2003) Development and use of state-and-transition models for rangelands, Journal of Range management, 56: 114-126
20.  Birgit F, Wiegand T (2008) Exploring spatiotemporal patterns in early stages of primary succession on former lignite mining sites, Journal of Vegetation Science, 19: 267-276
21.  Boulanger Y, Sirois L (2007) Postfire succession of saproxylic arthropods, with emphasis on coleopter, in the North boreal forest of quebec, Environ. Entomol., 36: 128-141
22.  Brown SP (2014) Rules and patterns of microbial community assembly, PhD theses, University of Oregon
23.  Brown SP, Jumpponen A (2013) Contrasting primary successional trajectories of fungi and bacteria in retreating glacier soils, Molecular Ecology, doi: 10.1111/mec.12487
24.  Burgess EE, Maron M (2016) Does the response of bird assemblages to fire mosaic properties vary among spatial scales and foraging guilds ? Landscape Ecology, 31: 687-699
25.  Butt KR, Briones MJI (2017) Earthworms and mesofauna from an isolated, alkaline chemical waste site in Northwest England, European Journal of Soil Biology, 78: 43-49
26.  Chagnon P-L (2015) Determinisme et stochasticite dans l’assemblage des communautes mycorhiziennes, PhD theses, Universite de Sherbrooke, Quebec
27.  Chang C, HilleRisLambers J (2016) Integrating succession and community assembly perspectives, F1000Research: 2294, doi: 10.12688/f1000research.8973.1
28.  Collins B, Wein G (1998) Soil resource heterogeneity effects on early succession, Oikos, 82: 238-245
29.  Courtney R, O’Neill N, Harrington T, Breen J (2010) Macro-arthropod succession in grassland growing on bauxite residue, Ecological Engineering, 36: 1666-1671
30.  Craig MD, Stokes VL, Fontaine JB, Hardy GEJ, Grigg AH, Hobbs R (2015) Do state-and-transition models derived from vegetation succession also represent avian succession in restored mine pits? Ecological Applications, 25: 1790-1806
31.  Cristescu RH, Frere C, Banks PB (2012) A review of fauna in mine rehabilitation in Australia: current state and future directions, Biological Conservation, 149: 60-72
32.  Crowther TW, Grossart H-P (2015) The role of bottom-up and top-down interactions in determining microbial and fungal diversity and function, In Hanley TC, La Pierre KJ (Eds.) “Experimental Limnology”, Cambridge University Press, 260-287
33.  Crowther TW, Maynard DS, Crowther TR, Peccia J, Smith JR, Bradford MA (2014) Untangling the fungal niche: the trait-based approach, Frontiers in Microbiology, 5: Article 579
34.  Crowther TW, Stanton DWG, Thomas SM, A’Bear AD, Hiscox J, Jones TH, Voriskova J, Baldrian P, Boddy P (2013) Top-down control of soil fungal community composition by a globally distributed keystone consumer, Ecology, 94: 2518-2528
35.  D’Amen M, Dubuis A, Fernandes RF, Pottier J, Pellissier L, Guisan A (2015) Using species richness and functional predictions to constrain assemblage predictions from stacked species distribution models, Journal of Biogeography, 42: 1255-1266
36.  Daniel CJ, Frid L, Sleeter BM, Fortin M-J (2016) State-and-transition simulation models: a framework for forecasting landscape change, Methods in Ecology and Evolution, 7: 1413-1423
37.  Dauber J, Simmering D (2006) Ant assemblages in successional stages of Scotch Broom stands (Hymenoptera: Formicidae; Spermatophyta) Myrmecologishe Nachrichten, 9: 55-64
38.  Davison J, Moora M, Jairus T, Vasar M, Opik M, Zobel M (2016) Hierarchical assembly rules in arbuscular mycorrhizal (AM) fungal communities, Soil Biology & Biochemistry, 97: 63-70
39.  DeBeeck MO, Ruytinx J, Smits MM,Vangronsveld J, Colpaert JV, Rineau F (2015) Belowground fungal communities in pioneer Scots pine stands growing on heavy metal polluted and non-polluted soils, Soil Biology & Biochemistry, 86: 58-66
40.  Dejean A, Djieto-Lordon C, Cereghino R, Leponce M (2008) Ontogenetic succession and the ant mosaic: an empirical approach using pioneer trees, Basic and Applied Ecology, 9: 316-323
41.  DeLeon DG, Moora M, Opik M, Jairus T, Neunenkamp L, Vasar M, Bueno CG, Gerz M, Davison J, Zobel M (2016)  Acta Oecologica, 77: 128-135
42.  Delhaye G, Violle C, Seleck M, Ilunga EI, Daubie I, Mahy G, Meerts P (2016) Community variation in plant traits along copper and cobalt gradients, Journal of Vegetation Science, 27: 854-864
43.  Dietterich LH (2016) Plant-soil feedbacks in heavy metal soils, PhD Dissertation, University of Pennsylvania
44.  Ding J, Jiang X, Guan D, Zhao B, Ma M, Zhou B, Cao F, Yang X, Li L, Li J (2017) Influence of inorganic fertilizer and organic manure application on fungal communities in a long-term field experiment of Chinese Mollisols, Applied Soil Ecology, 111: 114-122
45.  Dini-Andreote F, Pylro VS, Baldrian P, Van Elsas JD, Salles JF (2016) Ecological succession reveals potential signatures of marine-terrestrial transition in salt marsh fungal communities, The ISME Journal, 10: 1984-1997
46.  Doley D, Audet P (2013) Adopting novel ecosystems as suitable rehabilitation alternatives for former mine sites, Ecological Processes, 2: 22
47.  Dong K, Tripathi B, Moroenyane, Kim W, Li N, Chu H, Adams J (2016) Soil fungal community development in high Arctic glacier foreland follows a directional replacement model, with mid-successional diversity maximum, Scientific Reports, 6: 26360
48.  Dulay RMR, Pascual AHL, Constante RD, Tiniola RC, Areglo JL, Arenas MC, Kalaw SP, Reyes RG (2015) Growth response and mycormediation activity of Coprinus comatus on heavy metal contaminated media, Mycosphere, 6: 1-7
49.  Dumbrell AJ, Nelson M, Helgason T, Dytham C, Fitter AH (2010) Idiosincrasy and overdominnace in the structure of natural communities of arbuscular mycorrhizal fungi: is there a role for stochastic processes ? Journal of Ecology, 98: 419-428
50.  Eklof A, Jacon U, Jason K (2013) The dimensionality of ecological networks, Ecology Letters, 16: 577-583
51.  Falconer RE, Otten W, White NA (2015) Toward modeling the resistance and resilience of “below-ground” fungal communities: a mechanistic trait-based approach, Advances in Applied Microbiology, 93: 1-44
52.  Falenczik-Kozirog K, Kaczmarek S, Marquardt T, Marcysiak K (2012) Contribution to succession of mite (Acari) communities in the soil of Tilio-Carpinetum Tracz. 1962 in northern Poland, Acta Zoologica Cracoviensia, 55: 47-57
53.  Fischer H, Bergfur J, Goedkoop W, Tranvik L (2009) Microbial leaf degraders in boreal streams: bringing together stochastic and deterministic regulators of community composition, 54: 2276-2289
54.  Fox BJ (1982) Fire and mammalian secondary succession in an Australian Coastal Heath, Ecology, 63: 1332-1341
55.  Fox BJ (1990) Changes in the structure of mammal communities over successional time scale, Oikos, 59: 321-329
56.  Fox BJ (2003) Experimental manipulation of habitat structure: a retrogression of the small mammal succession, Journal of Animal Ecology, 72: 927-940
57.  Fraterrigo JM, Rusak JA (2008) Disturbance-driven changes in the variability of ecological patterns and proceses, Ecology Letters, 11: 756-770
58.  Frouz J, Jilkova V, Cajthaml T, Pizl V, Tajovsky K, Hanel L, Buresova A, Simackova H, Kolarikova K, Franklin J, Nawrot J, Groninger JW, Stahls PD (2013) Soil biota in post-mining sites along a climatic gradient in the USA: simple communities in shortgrass prairie recover faster than complex communities in tallgrass prairie and forest, Soil Biology & Biochemistry, 67: 212-225
59.  Frouz J, Pizl V, Tajovsky K, Stary J, Holec M, Materna J (2014) Soil macro- and mesofauna succession in post-mining sites and other disturbed areas, In Frouz J (Ed.) “Soil biota and ecosystem development in post mining sites”, CRC Press, Boca Raton, 216-235
60.  Frouz J, Prach K,Pizl V, Hanel L, Stary J, Tajovsky K, Materna J, Balik V, Kalcik J, Rehounkova K (2008) Interactions between soil development, vegetation and soil fauna during spontaneous succession in post mining sites, European Journal of Soil Biology, 44: 109-121
61.  Frouz J, Toyota A, Mudrak O, Jilkova V, Filipova A, Cajthaml T (2016) Effects of soil substrate quality, microbial diversity and community composition on the plant community during primary succession, Soil Biology & Biochemistry, 99: 75-84
62.  Gadd GM (2016) Fungi and Industrial Pollutants, In Druzhinina IS, Kubicek CP (editors) “Environmental and Microbial Relationships”. Springer, 99-125
63.  Gallagher FJ, Pechman I, Holzapfel C, Grabosky J (2011) Altered vegetative assemblage trajectories within an urban brownfield, Environmental Pollution, 159: 1159-1166
64.  Gange A (2000) Arbuscular mycorrhizal fungi, Collembola and plant growth, TREE, 15: 369-372
65.  Gao C, Shi NN, Chen L, Ji NN, Wu BW, Wang YL, Xu Y, Zheng Y, Mi XC, Ma KP, Guo LD (2017) Relationships between soil fungal and woody plant assemblages differ between ridge and valley habitats in a subtropical mountain forest, 213: 1874-1885
66.  Gonzalez-Varo JP, Traveset A (2016) The labile limits of forbidden interactions, Trends in Ecology & Evolution, 31: 700-709
67.  Grace JB (1991) A clarification of the debate between Grime and Tilman, Functional Ecology, 5: 583-587
68.  Grant CD (2006) State-and-Transition successional model for bauxite mining rehabilitation in the Jarrah forest of Western Australia, Restoration Ecology, 14: 28-37
69.  Grzes IM (2010) Ants and heavy metal pollution – A review, European Journal of Soil Biology, 46: 350-355
70.  Hanel L, Devetter M, Adl SM (2014) Recovery and colonization at post-mining sites by the soil microfauna, In Frouz J (Ed.) “Soil biota and ecosystem development in post mining sites”, CRC Press, Boca Raton, 172-215
71.  Harabis F (2016) High diversity of odonates in post-mining areas: Meta-analysis uncovers potential pitfalls associated with the formation and management of valuable, Ecological Engineering, 90: 438-446
72.  Hart MM, Gorzelak M, Ragone D, Murch S (2014) Arbuscular mycorrhizal fungal succcession in a long-lived perennial, Botany, 92: 1-8
73.  Hendrychova M, Salek M, Tajovsky K, Rehor M (2012) Soil properties and species richness of invertebrates on afforested sites after brown coal mining, Restoration Ecology, 20: 561-567
74.  Ho A, Di LeonardoDP, Bodelier PLE (2017) Revisiting life strategy concepts in environmental microbial ecology, FEMS Microbial Ecol, 93: fix006
75.  Hodecek J, Kuras T, Sipos J, Dolny A (2015) Post-industrial area as successional habitats: Long-term changes of functional diversity in beetle communities, Basic and Applied Ecology, 16: 629-640
76.  Hodge A (2014) Interactions between arbuscular mycorrhizal fungi and organic material substrates, Advances in Applied Microbiology, 89:47–99
77.  Holec M, Frouz J (2005) Ant (Hymenoptera: Formicidae) communities in reclaimed and unreclaimed brown coal mining spoil dumps in the Czech Republic, Pedobiologia, 49: 345-357
78.  Holmes AL, Robinson WD (2016) Small mammal abundance in mountain big sagebrush communities after fire and vegetation recovery, Western North American Naturalist, 76: 326-338
79.  Hupperts SF (2016) Ectomycorrhizal fungal community response to disturbance and host phenology, MSc Theses, University of Alberta
80.  Ibanez I, McCarthy-Neumann S (2016) Effects of mycorrhizal fungi on tree seedling growth: qunatifying the parasitism-mutualism transition along a light gradient, 46: 48-57
81.  Iordache V, Dumitru AL, Frâncu B, Iosif  I, Cătieșanu A, Onete M, Neagoe A (2016) Optimizing a remediation method on a tailing dam, presentation at: Jena, Germany, Conference: 15th symposium on remediation, From “expert knowledge” to basic science to application: 15 years of bio-geo interactions, DOI: 10.13140/RG.2.2.10303.92323
82.  Iordache V, Kothe E, Neagoe A, Gherghel F (2011) A conceptual framework for up-scaling ecological processes and application to ectomycorrhizal fungi. In Rai M, Varma A (ed.) Diversity and Biotechnology of Ectomycorrhiza. Springer, 255-299
83.  Iordache V, Onet M, Paucă M, Oromolu L, Honciuc V, Purice D, Cobzaru I, Gomoiu I, Neagoe A (2010) Biological communities in mining areas: scale dependent patterns, organisms’ potential as bioindicators, and native plants for remediation, Proceedings of the 7th European Conference on Ecological Restoration, Avignon, France
84.  Jarnevich CS, Holcombe TR, Thomas CC, Frid L, Olsson A (2015) Simulating long-term effectiveness and efficiency of management scenarios for an invasive grass, AIMS Environmental Science, 2: 427-447
85.  Jones TA, Monaco TA, Rigby CW (2015) The potential of novel native plant materials for the restoration of novel ecosystems, Elementa: Science of the Anthropocene, 3: 000047
86.  Jumpponen A, Egerton-Warburton LM (2005) Mycorrhizal fungi in successional environments: a community assembly model incorporating host plant, environmental, and biotic filters, In Dighton J, White JF, Oudemans P (Eds.) “The Fungal Community” CRC Press, 139-180
87.  June-Wells M, Gallagher F, Holzapfel C (2014) Evaluating population border dynamics among Artemisia vulgaris and community constituents in an urban successional plant assemblage, Journal of the Torrey Botanical Society, 141: 14-28
88.  Kalinkat G, Jochum M, Brose U, Dell AI (2015) Body size and the behavioral ecology of insects: linking individuals to ecological communities, Current Opinion in Insect Science, 9: 24-30
89.  Kaluka IL, Jagodzinski AM (2016) Successional traits in ectomycorrhizal fungi in forest reclamation after surface mining and agricultural disturbances: a review, Dendrobiology, 76: 91-104
90.  Kardol P, Bezemer TM, Van der Putten WH (2006) Temporal variation in plant-soil feedback controls succession, Ecology Letters, 9: 1080-1088
91.  Kielhorn K-H, Keplin B, Huttl RF (1999) Ground beetle communities on reclaimed mine spoil: Effects of organic matter application and revegetation, Plant and Soil, 213: 117-125
92.  Kikvidze Z, Armas C, Fukuda K, Martinez-Garcia LB, Miyata M, Oda-Tanaka A, Pugnaire FI, Wu B (2010) The role fo arbuscular mycorrhizae in primary succession: differences and similarities across habitats, Web Ecology, 10: 50-57
93.  Knelman JE, Schmidt SK, Lynch RC, Darcy JL, Castle SC, Cleveland CC, Nemergut DR (2014) Nutrient addition dramatically accelerates microbial community succession, PLOS One, 9: e102609. doi:10.1371/journal.pone.0102609
94.  Koehler H (1998) Secondary succession of soil mesofauna: a thirteen year study, Applied Soil Ecology, 9: 81-86
95.  Koide RT, Fernandez C, Petprakob K (2011) General principles in the community ecology of ectomycorrhizal fungi, Annals of Forest Science, 68 : 45-55
96.  Komnitsas K, Guo X, Li D (2010) Mapping of soil nutrients in an abandoned Chinese coal mine and waste disposal site, Minerals Engineering, 23: 627-635
97.  Koziol E (2016) The role of arbuscular mycorrhizal fungi in prairie grassland succession and restoration, PhD Theses, Indiana University
98.  Kruminis JA, Goodey NM, Gallagher F (2015) Plant-soil interactions in metal contaminated soils, Soil Biology & Biochemistry, 80: 224-231
99.  Kuziakov Y, Blagodatskaya (2015) Microbial hotspotsand hotmoments in soil: Concept & review, Soil Biology & Biochemistry, 83: 184-199
100.          Lavelle P (2012) Soil as a habitat, In Wall D. H. et al. (Editors) “Soil ecology and ecosystem services”, Oxford University Press, Oxford, 7-27
101.          Leal MC, Seehausen O, Mattheews B (2017) The ecology and evolution of stoichiometric phenotypes, Trends in Ecology & Evolution, 32: 108-117
102.          Leopold DR (2016) Ericoid fungal diversity: Challenges and opportunities for mycorrhizal research, Fungal Ecology, 24: 114-123
103.          Li J, Liu F, Chen J (2016) The effects of various land reclamation scenarios on the succession of soil bacteria, archaea, and fungi over the short and long term, Frontiers in Ecology and Evolution, 4: 32 doi: 10.3389/fevo.2016.00032
104.          Li M, Jordan NR, Koide RT, Yannarell AC (2017) Meta-Analysis of Crop and Weed Growth Responses to Arbuscular Mycorrhizal Fungi: Implications for Integrated Weed Management, Weed Science, 64: 642-652
105.          Li S, Caddote MW, Meiners SJ, Pu Z, Fukami SJ, Pu Z, Fukami T, Jiang L (2016) Convergence and divergence in a long-term old-field succession : the importance of spatial scale and species abundance, Ecology Letters, 19: 1101-1109
106.          Lundberg J, Moberg F (2003) Mobile link organisms and ecosystem functioning: implications for ecosystem resilience and management, Ecosystems, 6: 87-98
107.          Macek P, Prieto I, Mackova J, Piston N, Pugnaire FI (2016) Functional plant types drive plant interactions in a mediterranean mountain range, Frontiers in Plant Science, 7: 662, doi: 10.3389/fpls.2016.00662
108.          Machovsky-Capuska GE, Senior AM, Simpson SJ, Raubenheimer D (2016) The multidimensional nutritional niche, Trends in Ecology & Evolution, 31: 355-365
109.          Maraun M, Martens H, Migge S, Theenhaus A, Scheu S (2003) Adding to ‘the enigma of soil animal diversity’: fungal feeders and saprophagous soil invertebrates prefer similar food substrates, European Journal of Soil Biology, 39: 85-95
110.          Maron JL, Smith AL, Ortega YK, Pearson DE, Callaway RM (2016) Negative plant-soil feedbacks increase with plant abundance, and are unchanged by competition, Ecology, 97: 2055-2063
111.          McCook LJ (1994) Understanding ecological community succession: causal models and theories, a review, Vegetation, 110: 115-147
112.          Meiners SJ, Cadotte MW, Fridley JD, Picket STA, Walker LR (2015) Is successional research nearing its climax ? New approaches for understanding dynamic communities, Functional Ecology, 29: 154-164
113.          Millar NS, Bennet AE (2016) Stressed out symbiotes: hypotheses for the influence of abiotic stress on arbuscular mycorrhizal fungi, Oecologia, 182: 625-641
114.          Miller BW, Frid L, Chang T, Piekelek N, Hansen AJ, Morisette JT (2015) Combining state-and-transition simulations and species distribution models to anticipate the effects of climate change, AIMS Environmental Science, 2: 400-426
115.          Milne BT, Johnston KM, Forman RTT (1989) Scale-dependent proximity of wildlife habitat in a spatially-neutral Bayesian model, Landscape Ecology, 2: 101-110
116.          Milne BT, Turner MG, Wiens G, Johnson AR (1992) Interactions between the fractal geometry of landscapes and allometric herbivory, Theoretical Population Biology, 41: 337-353
117.          Monamy V, Fox BJ (2000) Small mammal succession is determined by vegetation density rather than time elapsed since disturbance, Animal Ecology, 25: 580-587
118.          Montiel-Rozas MdM, Lopez-Garcia A, Kjoller R, Madejon E, Rosendahl S (2016) Organic amendments increase phylogenetic diversity of arbuscular mycorrhizal fungi in acid soil contaminated by trace elements, Mycorrhiza, 26: 575-585
119.          Montiel-Rozas MdM, Lopez-Garcia A, Madejon P, Madejon E (2017) Native soil organic matter as a decisive factor to determine the arbuscular mycorrhizal fungal community structure in contaminated soils, Biol Fertil Soil, DOI 10.1007/s00374-017-1181-5
120.          Moore JC, StJohn TV, Coleman DC (1985) Ingestion of vesicular-arbuscular mycorrhizal hyphae and spores by soil microarhtropods, Ecology, 66: 1979-1981
121.          Morales-Castilla I, Matias MG, Gravel D, Araujo MB (2015) Inferring biotic interactions from proxies, TREE, 30: 347-356
122.          Morris SJ, Friese CF, Allen MF (2016) Disturbance in natural ecosystems: scaling from fungal diversity to ecosystem functioning, In Druzhinina IS and Kubicek CP (Eds) “Environmental and Microbial Relationships”, 79-98
123.          Mudrak O, Dolezal J, Frouz J (2016) Initial species composition predicts the progress in the spontaneous succession on post-mining sites, Ecological Engineering, 95: 665-670
124.          Naeem S, Colwell RK (1991) Ecological consequences of heterogeneity of consumable resources, In Kolosa J, Picklett STA (Editors) “Ecological Heterogeneity” Springer, New York, 224-255
125.          Nash KL, Allen CR, Angeler DG, Barichievy C, Eason T, Garmestani AS, Graham NAJ, Grandholm D, Knutsen M, Nelson RJ, Nystrom M, Stow CA (2014) Discontinuities, cross-scale patterns, and the organization of ecosystems, Ecology, 95: 654-667
126.          Neagoe A, Iordache V, Kothe E (2010) Effects of the inoculation with AM fungi on plant development and oxidative stress in areas contaminated with heavy metals. Presentation at COST870 meeting in Jyvaskyla, Finland, 13-15 December, Book of abstracts, pp 22
127.          Neagoe A, Iordache V, Kothe E (2013) Upscaling the biogeochemical role of arbuscular mycorrhizal fungi in metal mobility, in Goltapeh EM, Danesh ER, Varma A (Eds) “Fungi as bioremediators, Springer, 285-311
128.          Neagoe A, Stancu P, Nicoară A, Onete M, Bodescu F, Gheorghe R, Iordache V (2014) Effects of arbuscular mycorrhizal fungi on Agrostis capillaris grown on amended mine tailing substrate at pot, lysimeter, and field plot scales, Environmental Science of Pollution Research, 21: 6859 – 6876
129.          Ngosong C, Gabriel E, Ruess L (2014) Collembola grazing on arbuscular mycorrhiza fungi modulates nutrient allocation in plants, Pedobiologia – Journal of Soil Ecology, 57: 171-179
130.          Nichols OG, Nichols FM (2003) Long-term trends in faunal recolonization after bauxite mining in the Jarrah Forest of Southwestern Australia, Restoration Ecology, 11: 261-272
131.          Nicoară A, Neagoe A, Stancu P, de Giudici G, Langella F, Sprocati AR, Iordache V, Kothe E (2014) Coupled pot and lysimeter experiments assessing pant performance in microbially asisted phytoremediation, Environmental Science of Pollution Research, 21: 6905-6920
132.          Nikolic N (2013) Ecology of alluvial arable land polluted by copper mine tailings: new insights for restoration, PhD Theses, University of Hohenheim
133.          Nikolic N, Kostic L, Djordjevic A, Nikolic M (2011) Phosphorus deficiency is the major limiting factor for wheat on alluvium polluted by copper mine pyrite tailings: a black box approach, Plant Soil, 339: 485-498
134.          Norman MA, Koch JM, Grant CD, Morald TK, Ward SC (2008) Vegetation Succession after bauxite mining in Western Australia, 14: 278-288
135.          O’Brien SL, Gibbons SM, Owens SM, Hampton-Marcell J, Johnston ER, Jastrow JD, Gilbert JA, Meyer F, Antonopoulos DA (2016) Spatial scale drivers patterns in soil bacterial diversity, Environmental Microbiology, 18: 2039-2051
136.          Opik M, Davison J (2016) Uniting species- and community-oriented approaches to understand arbuscular mycorrhizal fungal diversity, Fungal Ecology, 24: 106-113
137.          Opik M, Peay KG (2016) Mycorrhizal diversity: diversity of host plants, symbiotic fungi and relationships, Fungal Ecology, 24: 103-105
138.          Parmenter RR, Macmahon JA (1987) Early successional patterns of arthropod recolonization on reclaimed strip mines in Southwestern Wyoming: The ground-dwelling beetle fauna (Coleoptera), Environ Entomol, 16: 168-177
139.          Paterno GB, Filho JAS, Ganade G (2016) Species-specific facilitation, ontogenetic shifts and consequences for plant community succession, Journal of Vegetation Science, 27, 606-615
140.          Peay KG (2016) The mutualistic niche: mycorrhizal symbiosis and community dynamics, Annu Rev Evol Syst, 47: 143-164
141.          Peay KG, Bruns TD (2014) Spore dispersal of basidiomycete fungi at the landscape scale is driven by stochastic and deterministic processes and generates variability in plant–fungal interactions, New Phytologist, 204: 180-191
142.          Peay KG, Mathney PB (2017) The biogeography of ectomycorrhizal fungi – a history of life in the subterranean, In Martin F (Ed.) “Molecular Mycorrhizal Symbiosis”, John Willey & Sons, 341-361
143.          Pickles BJ, Anderson IC (2016) Spatial ecology of ectomycorrhizal fungi communities, In Martin F (Ed.) “Molecular Mycorrhizal Symbiosis”, John Willey & Sons, 363-386
144.          Pietrzykowski M (2014) Reclamation and reconstruction of terrestrial ecosystems on mine sites – ecological effectiveness assessment, Energy, 2: 120-151
145.          Poisot T, Stoufer DB, Kefi S (2016) Describe, understand and predict: why do we need networks in ecology ? Functional Ecology, 30: 1878-1882
146.          Powel JR, Bennet AE (2016) Unpredictable assembly of arbuscular mycorrhizal fungal communities, Pedobiologia, 59: 11-15
147.          Powel JR, Karunaratne S, Campbell CD, Yao H, Robinson L, Singh BK (2015) Deterministic processes vary during community assembly for ecologically dissimilar taxa, Nature Communications, 6:8444, doi: 10.1038/ncomms9444
148.          Prewitt L, Kang Y, Kakumanu ML, Williams M (2014) Fungal and bacterial community succession for three wood types during decay in forest soil, Microbial Ecology, 68: 212-221
149.          Provencher L, Frid L, Czembor C, Morisette JT (2016) State-and-transition models: conceptual versus simulation perspectives,usefulness andbreadth of use, and land management applications, In Germino MJ et al. (eds.) “Exotic brome-grasses in arid and semiarid ecosystems of the Westearn US, Springer, 371-407
150.          Revillini D., Gehring CA, Johnson NC (2016) The role of locally adapted mycorrhizas and rhizobacteria in plant-soil feedback systems, Functional Ecology, 30: 1086-1098
151.          Rhodes CJ (2014) Mycoremediaton (bioremediation with fungi) – growing mushrooms to clean the earth, Chemical Speciation and Bioavailability, 26: 196-198
152.          Rigg JL, Offord CA, Singh BK, Anderson I, Clarke S, Powell JR (2016) Soil microbial communities influence seedling growth of a rare conifer independent of plant–soil feedback, Ecology, 97: 3346-3358
153.          Rigg JL, Offord CA, Singh BK, Anderson IC, Clarke S, Powell JR (2016) Variation in soil microbial communities associated with critically endangered Wollemi pine affects fungal, but not bacterial, assembly within seedling roots, Pedobiologia, 59, 61-71
154.          Rigg JL, Offord CA, Zimmer H, Anderson IC, Singh BK, Powell JR (2017) Conservation by translocation: establishment of Wollemi pine and associated microbial communities in novel environments, Plant Soil, 411: 209-225
155.          Roubickova A (2013) Interactions of soil fauna and plants during succession on spoil heaps after brown coal mining, PhD Theses, Charles University of Prague
156.          Roy-Bolduc A, Bell TH, Boudreau S, Hijri M (2015) Comprehensive sampling of an isolated dune system demonstrates clear patterns in soil fungal communities across a successional gradient, Environmental Microbiology Reports, 7: 839-848
157.          Roy-Bolduc A, Laliberte E, Boudreau S, Hijri M (2014) Strong linkage between plant and soil fungal communities along a coastal dune system, FEMS Microbial Ecology, 92: fiw156
158.          Ruess L, Lussenhop J (2012) Trophic interactions of fungi and animals, In Wall D. H. et al. (Editors) “Soil ecology and ecosystem services”, Oxford University Press, Oxford, pagini
159.          Scheiner SM, Chiarucci A, Fox GA, Helmus MR, McGlinn DJ, Willig MR (2011) The underpinnings of the relationship of species richness with space and time, Ecological Monography, 81, 195-213
160.          Scheu S, Schulz E (1996) Secondary succession, soil formation and development of a diverse community of oribatids and saprophagous soil macro-invertebrates, Biodiversity and Conservation 5: 235-250
161.          Schickmann S, Urban A, Krautler K, Nopp-Mayr U, Hacklander K (2012) The interrelationship of mycophagous small mammals and ectomycorrhizal fungi in primeval, disturbed and managed Central European mountainous forests, Oecologia, 170: 395-409
162.          Schmidt SK, Nemergut DR, Darcy JL, Lynch R (2014) Do bacterial and fungal communities assemble differently during primary succession ? Molecular Ecology, 23, 254-258
163.          Schneider K, Renker C, Maraun M (2005) Oribatid mite (Acari, Oribatida) feeding on ectomycorrhizal fungi, Mycorrhiza, 16: 67-72
164.          Schrama M, Van der Plas F, Berg MP, Off H (2017) Decoupled diversity dynamics in green and brown webs during primary succession in a saltmarsh, Journal of Animal Ecology, 86: 158-169
165.          Schweiger W, Diffendorfer JE, Holt RD, Pierotti R, Gaines MS (2000) The interaction of habitat fragmentation, plant and small mammal succession in an old field, Ecological Monographs, 70: 383-400
166.          Sheoran V, Sheoran AS, Poonia P (2010) Soil reclamation of abandoned mine land by revegetation: a review, International Journal of Soil, Sediment and Water, 3, Art. 13
167.          Sheoran V, Sheoran AS, Poonia P (2016) Factors affecting phytoextraction, Pedosphere, 26: 148-166
168.          Singh M, Srivastava PK, Verma PC, Kharwar RN, Singh N, Tripathi RD (2015) Soil fungi for mycoremediation of arsenic pollution in agriculture soils, Journal of Applied Microbiology, 119: 1278-1290
169.          Sperfeld E, Wagner ND, Halvorson HM, Malishev M, Raubenheimer D (2017) Bridging ecological stoichiometry and nutritional geometry with homestasis concepts and integrative models of organism nutrition, Functional Ecology, 31: 286-296
170.          Stamou GP, Papatheodorou (2016) Studying the complexity of the secondary succession process in the soil of restored open mine lignite areas: the role of chemical template, Applied Soil Ecology, 103, 56-60
171.          Sterkenburg E (2016) Drivers of soil fungal communities in boreal forests, PhD theses, Swedish University of Agricultural Sciences
172.          Stringham T K, Krueger WC, Shaver PL (2001) States, transitions, and threshold: further refinement for rangeland applications, Special Report 1024, Oregon State University
173.          Stursova M, Barta J, Santruckova H, Baldrian P (2016) Small-scale spatial heterogeneity of ecosystem properties, microbial community composition and microbial activities in a temperate mountain forest soil, FEMS Microbiol Ecol 92: fiw185.
174.          Sun H, Wu Y, Zhou J, Bing H (2016) Variations of bacterial and fungal communities along a primary successional chronosequence in the Hailuogou glacier retreat area (Gongga Mountain, SW China), J. Mt. Sci, 13: 1621-1631
175.          Sun Q, Liu Y, Yuan H, Lian B (2016) The effect of environmental contamination on the community structure and fructification of ectomycorrhizal fungi, Microbiology Open, 6:e00396
176.          Swihart RK, Slade NA (1990) Long-term dynamics of an early successional small mammal community, American Midland Naturalist, 123: 372-382
177.          Tedersoo L, Bahram M, Cajthaml T, Polme S, Hiiesalu I, Anslan S, Harend H, Buegger F, Pritsch K, Koricheva J, Abarenkov K (2016) Tree diversity and species identity effects on soil fungi, protists and animals are context dependente, The ISME Journal, 10: 346-362
178.          terHorst CP, Zee PC (2016) Eco-evolutionary dynamics in plant-soil feedbacks, Functional Ecology, 30: 1062-1072
179.          Teste FP (2016) Restoring grasslands with arbuscular mycorrhizal fungi around remnant patches, Applied Vegetation Science, 19: 3-4
180.          Teste FP, Dickie IA (2017) Mycorrhizas across successional gradients, In Johnson NC, Gehring C, Jansa J “Mycorrhizal mediation of soil fertility, structure and carbon storage”, Elsevier, 67-89
181.          Tews J, Brose U, Grimm V, Tielborger K, Wichmann MC, Schwager M, Jeltsch F (2004) Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures, Journal of Biogeography, 31: 79-92
182.          Tilman D (1985) The resource-ratio hypothesis in plant succession, The American Naturalist, 125: 827-852
183.          Tilman D (1990) Constraints and tradeoffs: toward a predictive theory of competition and succession, OIKOS, 58: 3-15
184.          Tischew S, Baasch A, Grunert H, Kirmer A (2014) How to develop native plant communities in heavily altered ecosystems: examples from large-scale surface mining in Germany, Applied Vegetation Science, 17: 288-301
185.          Tiunov AV, Scheu S (2005) Arbuscular mycorrhiza and Collembola interact in affecting community composition of saprotrophic microfungi, Oecologia, 142: 636-642
186.          Topp W, Thelen K, Kappes H (2010) Soil dumping techniques and afforestation drive ground-dweling beetle assemblages in a 25-year-old open-cast mining reclamation area, 36: 751-756
187.          Tordoff GM, Boddy L, Jones TH (2008) Species-specific impacts of collembola grazing on fungal foraging ecology, Soil Biology & Biochemistry, 40: 434-442
188.          Torrez V, Ceulemans T, Mergeay J, de Meester L, Honnay O (2016) Effects of adding an arbuscular mycorrhizal fungi inoculum and of distance to donor sites on plant species recolonization following topsoil removal, Applied Vegetation Science, 19: 7-19
189.          Triska MD, Craig MD, Stokes VL, Pech RP, Hobbs RJ (2016) The relative influence of in situ and neighborhood factors on reptile recolonization in post-mining restoration sites, Restoration Ecology, 24: 517-527
190.          Urbanova M, Snajdr J, Brabcova V, Merhautova V, Dobiasova P, Cajthami T, Vanek D, Frouz J, Santruckova H, Baldrian P (2014) Litter decomposition along a primary post-mining chronosequence, Biol Fertil Soils, 50: 827-837
191.          Valyi K, Marhiah U, Rillig MC, Hempel S (2016) Community assembly and coexistence in communities of arbuscular mycorrhizal fungi, The ISME Journal, 10: 2341-2351
192.          Van der Wal A, Geydan TD, Kuyper TW, de Boer Wietse (2012) A thready affair: linking fungal diversity and community dynamics to terrestrial decomposition processes, FEMS Microbiol Rev, 37: 477-494
193.          Vernes K (2003) Fine-scale habitat preferences and habitat partitioning by three mycophagous mammals in tropical wet sclerophyll forest, north-eastern Australia, 28: 471-479
194.          Walker LR, Walker J, Hobbs RJ (2007) “Linking Restoration and Ecological Succession”, Springer, New York
195.          Walker LR, Wardle DA, Bardgett RD, Clarkson BD (2010) The use of chronosequences in studies of ecological succession and soil development, Journal of Ecology, 98: 725-736
196.          Weiher E, Freund D, Bunton T, Stefansky A, Lee T, Bentivenga S (2011) Advances, challenges and a developing synthesis of ecological community assembly theory, Phil. Trans. R. Soc. B, 366: 2403-2413
197.          Wodika BR, Klopf RP, Baer SG (2014) Colonization and recovery of invertebrate ecosystem engineers during prairie restoration, Restoration Ecology, 22: 456-464
198.          Wright IJ, Reich PB, Westoby M, et al. (2004) The worldwide leaf economics spectrum, Nature, 428: 821-827
199.          Zangaro W, Rondina ABL (2016) Arbuscular mycorrhizas in different succesional stages in some Brazilian ecosystems, In Pagano MC “Recend advances on mycorrhizal fungi”, 47-62

200.          Zorilla JM, Serrano JM, Casado MA, Acosta FJ, Pineda FD (1986) Structural characteristics of an ant community during succession, Oikos, 47: 346-354

Niciun comentariu:

Trimiteți un comentariu